The ongoing dialogue between humans and AI not only showcases the remarkable capabilities of current technologies but also illuminates the future possibilities of AI-human synergy, promising an era where AI enhances human creativity, decision-making, and problem-solving in unprecedented ways. Our hackathon project explored the interaction between humans and Large Language Models (LLMs) over time, developing a novel metric, the Human Interpretive Number (HIN Number), to quantify this dynamic. Leveraging tools like Trulens for groundedness analysis and HHEM for hallucination evaluation, we integrated features like a custom GPT-5 scene writer, the CrewAI model translator, and interactive Dall-E images with text-to-audio conversion to enhance understanding. The HIN Number, defined as the product of Groundedness and Hallucination scores, serves as a new benchmark for assessing LLM interpretive accuracy and adaptability. Our findings revealed a critical inflection point: LLMs without guardrails showed improved interaction quality and higher HIN Numbers over time, while those with guardrails experienced a decline. This suggests that unrestricted models adapt better to human communication, highlighting the importance of designing LLMs that can evolve with their users. Our project underscores the need for balanced LLM development, focusing on flexibility and user engagement to foster more meaningful human-AI interactions.
Category tags:"the storytelling style of your video ppt is amazing, as if i was taken in a journey. your app is great and with your way of thinking in it , it is going to be successful. some bugs are present in your demo, but you can make it better. good luck"
Walaa Nasr Elghitany
Data scientist and doctor